Received February 24 1988 accepted September 12 1988

REACTIONS OF PHENYLTELLURIUM(VI) FLUORIDES WITH ALCOHOLS, AMINES AND SILICON COMPOUNDS*

ALEXANDER F JANZEN, KOHRSHED ALAM and BARRY J BLACKBURN

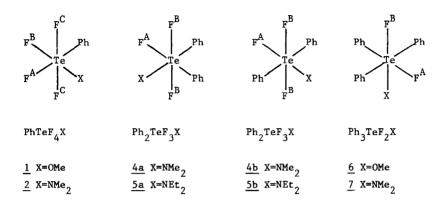
Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

SUMMARY

The reactions of phenyltellurium(VI) fluorides, $PhTeF_5$, $trans-Ph_2TeF_4$ and $mer-Ph_3TeF_3$, with alcohols and amines, or their trimethylsilyl derivatives, are described The products $PhTeF_4X$, Ph_2TeF_3X and Ph_3TeF_2X (X=OMe, NMe₂, NEt₂) were characterized by ¹⁹F NMR and isomeric structures are assigned on the basis of their NMR spectra Samples of $trans-Ph_2TeF_4$ contain small amounts of $cis-Ph_2TeF_4$

RESULTS AND DISCUSSION

The reactions of phenyltellurium(VI) fluorides [1,2], <u>i e</u> $PhTeF_5$, trans-Ph₂TeF₄ and mer-Ph₃TeF₃, with alcohols and amines were carried out by using either NaF or R₂NH as the HF acceptor, or by choosing the corresponding trimethylsilyl derivative


 $PhTeF_{5} + Me_{3}S1OR \xrightarrow{-Me_{3}S1F} PhTeF_{4}OR \xrightarrow{NaF} PhTeF_{5} + ROH$ $Ph_{2}TeF_{4} + Me_{3}S1NR_{2} \xrightarrow{-Me_{3}S1F} Ph_{2}TeF_{3}NR_{2} \xleftarrow{-R_{2}NH HF} Ph_{2}TeF_{4} + 2R_{2}NH$

The products $PhTeF_4X$, Ph_2TeF_3X and Ph_3TeF_2X (X=OMe, NMe_2 , NEt_2) <u>1-7</u> were identified on the basis of their ¹⁹F NMR spectra (Table 1) which are in agreement with those of related Te(VI) fluorides [1-4] The cis geometry of $PhTeF_4X$ <u>1-2</u> is established by the ABC₂ spin system and F^A is assigned to a

© Elsevier Sequoia/Printed in The Netherlands

^{*}This paper is dedicated to Professor D C Bradley on the occasion of his retirement

site trans to a phenyl substituent because it has been found that a phenyl group in Ph_3TeF_3 [2], Ph_3TeF_2Cl [1] and Ph_3TeF_2OH [5] produces a large downfield shift in the trans fluorine.

Compounds 3-5 have AB₂ spectra and two isomers of Ph₂TeF₃X are shown above. The downfield shift of F^A in <u>4a</u> and <u>5a</u> suggests a structure in which F^A is trans to a phenyl substituent, but the structure of Ph₂TeF₃OMe <u>3</u> remains uncertain. A third isomer of Ph₂TeF₃X, in which both fluorines are trans to phenyls, would be expected to show a doublet at low field, but this was not observed. For products Ph₃TeF₂X <u>6-7</u>, we make the assumption that the three bulky phenyl substituents adopt a *mer* arrangement, as confirmed by x-ray crystallography for Ph₃TeF₃ [2] and Ph₃TeF₂OH [5], and in that case the stereochemistry of 6-7 is established by the AB spin system.

Other isomers of 1-7 were also observed by ¹⁹F NMR, but they were produced in smaller yields and their characterization is incomplete.

In some reactions, there was evidence of reduction to Te(IV) species, most readily observed by the formation of Ph_2TeF_2 in reactions of diphenyltellurium(VI) compounds. For example, the reaction of Ph_2TeF_4 with MeOH produced some Ph_2TeF_2 which increased when the reaction conditions were changed from $40^{\circ}C$ to $50^{\circ}C$.

During the preparation of $trans-Ph_2TeF_4$, a small amount (1-4%) of $cis-Ph_2TeF_4$ was observed and identified by its A_2B_2 NMR spectrum (Table 1). Analogous compounds $cis-(C_{6}F_5)_2TeF_4$ [6] and $cis-Ph_2SF_4$ [7] have been described previously.

TABLE 1

 $^{1}9_{\rm F}$ nmr data of some phenyltellurium(VI) compounds $^{\rm a}$

Compound	co	Spin system	όF _A	ό F _B	¢F _C	J(F _A F _B)	J(F _A F _C)	J(F _B F _C)	Spin $d F_A$ $d F_B$ $d F_C$ J $(F_A F_B)$ J $(F_A F_C)$ J $(F_B F_C)$ J $(F_A T_e)$ ystem	J(F _B Te)	J(F _B Te) J(F _C Te) Solvent	Solvent
<i>cis</i> -PhTeP ₄ OMe <u>1</u> ABC ₂		ABC ₂	-45	-49	-60	148	105	130	3330	2940	3288	cD ₂ C1 ₂
cis -PhTeF ₄ NMe $_2$ $\frac{2}{2}$ ABC $_2$	2	ABC ₂	-34	-47	-73	153	105	123	3150	3400	3115	cD ₂ C1 ₂
Ph ₂ TeF ₃ OMe	ς. Γ	AB ₂	-31	-74		29			2920	2768		cDC13
Ph2TeF3NMe2	43	AB_2	оо І	-88		40			2802	2466		ср ₃ си
	4 1	AB ₂	-20	-53		68			2690	2380		ср ₃ си
Ph ₂ TeF ₃ NEt ₂	5a	AB2	-12	-85		43			2784	2450		cDC13
Ph ₂ TeF ₃ NEt ₂	29	AB ₂	-37	-64		30			2928	2825		cDC13
Ph ₃ TeF ₂ OMe	اف	AB	- 29	-75		55			2610	2076		$c_{0}c_{1}c_{2}$
Ph ₃ TeF ₂ NMe ₂	-1	AB	- 7	-65		70			2370	2008		ср ₃ си
cis -Ph $_2$ TeF $_4$	œ	$\mathbf{A_2}^{\mathbf{B_2}}$	-35	-78		88			2880	2685		cdc1 ₃

 $^{\rm a}{\rm Chemical}$ shifts are reported in ppm and coupling constants in Hz.

EXPERIMENTAL

¹⁹F NMR spectra were recorded on a Bruker AM300 spectrometer at 282 4 MHz with the use of C_6F_6 (-162 9 ppm with respect to CFCl₃) as internal reference Ph₃TeF [8], Ph₃Te⁺BF₄ [1] and Ph₃TeF₃ [2] were prepared as described in the literature PhTeCl₃ was prepared from TeCl₄ and Ph₃SnCl [9] and converted to PhTeF₃ with the use of AgF [10] The remaining starting compounds were commercial samples and used as supplied

 $\begin{array}{l} \mbox{PhTeF}_5 \mbox{ was prepared by slowly (20 mm) adding solid XeF}_2 (0 04 \mbox{ g, } 0 21 \mbox{mmol}) \mbox{ to a stirred solution of PhTeF}_3 (0 05 \mbox{ g, } 0 19 \mbox{ mmol}) \mbox{ in CH}_2 \mbox{Cl}_2 \mbox{ (2 mL)} \mbox{ in a Teflon bottle} & \mbox{After further stirring for 3 hr at 25 $^{\circ}$C, volatile} \mbox{ material was removed under vacuum and the remaining viscous oil identified} \mbox{ as PhTeF}_5 \mbox{ by } {}^{19}\mbox{F and } {}^{125}\mbox{Te NMR and MS [1]} \end{array}$

 Ph_2TeF_2 was prepared by slowly adding Ph_2Te (0 15 g, 0 53 mmol) in CH_2Cl_2 (2 mL) through a syringe to a stirred solution of XeF₂ (0 1 g, 0 59 mmol) in CH_2Cl_2 (2 mL) at 0°C Stirring was continued at 25°C for about 30 min until the evolution of Xe gas ceased and the yellow colour of the solution disappeared Removal of volatile material under vacuum gave Ph_2TeF_2 which was recrystallized from benzene/n-hexane and identified by ¹⁹F NMR [11]

Preparation of cis-PhTeF, OMe 1

(i) MeOH (1 9 mmol), NaF (1 8 mmol) and PhTeF₅ (0 31 mmol) in CH_3CN/CH_2Cl_2 (1 1, 2 mL) was stirred in a Teflon bottle for 18 h and then filtered The filtrate was dried under vacuum and a white solid was obtained and identified (Table 1) as *cis*-PhTeF₁OMe <u>1</u>

(ii) Me₃SiOMe (0 35 mmol) and PhTeF₅ (0 2 mmol) in CH_2Cl_2 (1 mL) was kept at 20°C for 12 h, with occasional shaking to give Me₃SiF and cis-PhTeF₆OMe <u>1</u>

Preparation of cis-PhTeF, NMe, 2

 Me_3SiNMe_2 (0 54 mmol) and $PhTeF_5$ (0 24 mmol) in CH_2Cl_2 (1 mL) was kept in an NMR tube at 20^oC for 12 hr during which time the solution turned yellow Me_3SiF and other volatile material was removed under vacuum and the remaining solid was identified (Table 1) as *cris*-PhTeF₄NMe₂ $\frac{2}{2}$ (i) MeOH (0.61), NaF (0.91 mmol) and $trans-Ph_2TeF_4$ (0.32 mmol) in CH_2Cl_2 (4 mL) was stirred for 2 days, with occasional warming, and then filtered. The filtrate was dried under vacuum and a white solid was obtained and identified (Table 1) as Ph_2TeF_3OMe 3.

(ii) Me_3SiOMe (0.16 mmol) and $trans-Ph_2TeF_4$ (0.10 mmol) in CH_2Cl_2 (1 mL) was kept in an NMR tube at 20°C for 3 days to give Me_3SiF and Ph_2TeF_3OMe 3.

Preparation of Ph. TeF. NR, R=Me (4a-4b) and R=Et (5a-5b)

(i) Me_3SiNMe_2 (0.56 mmol) and $trans-Ph_2TeF_4$ (0.19 mmol) in CHCl₃ (1 mL) was kept in a sealed tube at 20°C for 4 days, then heated to 35°C for 1 hour. Two AB₂ NMR spectra were observed (Table 1) and assigned to two isomers of Ph₂TeF₃NMe₂, <u>4a</u> and <u>4b</u>.

Replacing Me_3SiNMe_2 with Me_3SiNEt_2 in the previous reaction, gave two isomers of $Ph_2TeF_3NEt_2$, <u>5a</u> and <u>5b</u>.

(11) Me_2NH (0.65 mmol), $trans-Ph_2TeF_4$ (0.23 mmol) and $CHCl_3$ (1 mL) was kept in a sealed tube for 5 days at 20°C during which time the solution turned dark yellow and crystals of Me_2NH ·HF formed. The latter were removed and the ¹⁹F NMR spectra (Table 1) of the solution showed two AB_2 spectra assigned to two isomers of $Ph_2TeF_3NMe_2$, <u>4a</u> and <u>4b</u>.

Preparation of PhaTeF, OMe 6

MeOH (0.89 mmol), NaF (2.8 mmol) and $mer-Ph_3TeF_3$ (0.41 mmol) in CHCl₃ (3 mL) was kept in a sealed tube at 20^oC for 3 days, and then heated to 45^oC for 30 min. The solution was filtered and the filtrate dried under vacuum to give a white solid identified as Ph_3TeF_2OMe <u>6</u>.

Preparation of Ph_TeF_NMe_2 7

 Me_2NH (0.52 mmol), mer-Ph₃TeF₃ (0.28 mmol) and CHCl₃ (3 mL) was kept at 20°C for 5 days and then heated to 40°C for 20 min. Solid Me_2NH ·HF was removed from the yellow solution which contained Ph₃TeF₂NMe₂ <u>7</u>.

Trans-Ph2TeF4 and cis-Ph2TeF4 8

Solid XeF₂ (0 12 g, 0 70 mmol) was added to a stirred solution of Ph_2TeF_2 (0 16 g, 0 48 mmol) in CH_2Cl_2 (4 mL) at 0°C After stirring for 2 days at 25°C, all volatile material was pumped off to give a white solid which was recrystallized from benzene/n-hexane and identified as $trans-Ph_2TeF_4$ by ¹⁹F and ¹²⁵Te NMR [1]

 $Trans-Ph_2TeF_4$ was also prepared in a one-step reaction by using an excess of XeF₂ (0 12 g, 0 70 mmol) and Ph₂Te (0 08 g, 0 27 mmol) in CH₂Cl₂ It was also recovered from the reaction of XeF₂ and Ph₃Te⁺BF₄⁻ in CH₂Cl₂/CH₃CN

The synthesis of $trans-Ph_2TeF_4$ was occasionally accompanied by the formation of small amounts (1-4%) of $crs-Ph_2TeF_4$ 8, identified by its A_2B_2 ¹⁹F NMR spectrum (Table 1) Attempts to isolate $crs-Ph_2TeF_4$ were unsuccessful

REFERENCES

- 1 K Alam and A F Janzen, J Fluorine Chem, 27 (1985) 467
- 2 A S Secco, K Alam, B J Blackburn and A F Janzen, Inorg Chem, 25 (1986) 2125
- 3 C Lau, J Passmore, E K Richardson, T K Whidden and P S White Can J Chem <u>63</u> (1985) 2273
- J Dalton, W McFarlane, C R Wickens, G W Fraser and J B Millar Org Magn Reson <u>8</u>, 522 (1976), B Bildstein, W Tötsch and F Sladky Z Naturforsch <u>36b</u>, 1542 (1981), K Seppelt Angew Chem Int Ed <u>21</u> (1982) 877
- 5 A F Janzen, K Alam, M Jang, B J Blackburn and A S Secco Can J Chem 66 (1988) 1308
- 6 G Klein and D Naumann J Fluorine Chem 30 (1985) 259
- 7 D B Denney, D Z Denney and Y F Hsu J Am Chem Soc <u>95</u> (1973) 8191
- 8 H J Emeleus and H G Heal J Chem Soc (1946) 1126
- 9 C P Ram, K K Bhasin and R K Chadha J Inorg Nucl Chem 37 (1975) 2337
- 10 F J Berry, E H Kustan, M Roshani and B C Smith J Organometall Chem <u>99</u> (1975) 115
- 11 I Ruppert Chem Ber 112 (1979) 3023